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Long-ranged, or power-law, behavior of correlation functions in both space and 
time is discussed for classical systems and for quantum systems at finite tem- 
perature, and is compared with the corresponding behavior in quantum systems 
at zero temperature. The origin of the long-ranged correlations is explained in 
terms of soft modes. In general, correlations at zero temperature are of longer 
range than their finite-temperature or classical counterparts. This phenomenon 
is due to additional soft modes that exist at zero temperature. 

KEY WORDS: Long-range correlations; zero-temperature; soft modes; long- 
time tails; nonanalytic density expansion. 

1. I N T R O D U C T I O N  

H o m o g e n e o u s  functions,  or  power  laws, of  space and t ime do  no t  con ta in  
any intr insic  length or  t ime scales, in con t ras t  to, e.g., exponent ia ls .  This  
so-cal led scale invar iance  is well k n o w n  to occur  at  cri t ical  points ,  where  
the cri t ical  modes  become soft, which leads to power - l aw cor re la t ion  func- 
t ions (see, e.g., refs. 1 ). Cr i t ical  po in ts  are  except ional  po in ts  in the phase  
d i ag rams  of  mater ia ls ,  and  reaching them requires  the fine tuning  of  
p a r a m e t e r  values. W h a t  is less well apprec ia ted  is the fact tha t  m a n y  
systems d isp lay  wha t  is now k n o w n  as generic scale invar iance  (GSI ) ,  tha t  
is, power - l aw cor re la t ion  funct ions in large regions of  p a r a m e t e r  space, 
with no fine tuning  requi red  at  all to see them. G S I  is due to soft modes  
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that are not related to critical phenomena, but rather are due to conserva- 
tion laws, or are otherwise inherent to the system. In recent years there has 
been a lot of attention paid to GSI, and the phenomenon has been dis- 
cussed in a wide variety of systems, ranging from classical fluids and liquid 
crystals to disordered electrons and sandpiles. For recent reviews see 
refs. 2. 

In this paper we compare and contrast GSI and related phenomena in 
classical fluids and Lorentz gases with what we will call quantum GSI 
(QGSI), a similar but in general stronger effect that occurs in quantum 
systems at zero temperature. We will discuss four closely related topics: ( 1 ) 
the nonexistence of virial expansions for the transport coefficients, (2) long- 
time tails, i.e., power-law decays of equilibrium time correlation functions 
that determine the transport coefficients, (3) long-range, or power-law, spa- 
tial correlations in nonequilibrium steady states, and (4) power-law spatial 
correlations in quantum mechanical systems in and out of equilibrium. 

In Section 2 we review the occurrence of the above phenomena in 
classical fluids and Lorentz gases. In Section 3 we discuss the analogous 
effects in a quantum system, namely disordered electrons. In general, QGSI 
is characterized by correlations of longer range in space and/or time than 
those characteristic of the classical GSI. Reasons for this are discussed. In 
Section 4 we conclude with a summary and a few remarks. 

2. REVIEW OF CLASSICAL SYSTEMS 

2.1. Density Expansion of the Transport Coefficients 

The first indications for long-ranged dynamical correlations in classi- 
cal fluids appeared in the 1960s, when problems were encountered in 
attempts to theoretically establish the density dependence of the transport 
coefficients of moderately dense gases. Up to that time it had been assumed 
that, in analogy with the virial expansion for the thermodynamic quantities 
(see, e.g., ref. 3), such as, e.g., the pressure, an analytic density expansion 
existed for an arbitrary transport coefficient ~/of the form 

rl/rIB = 1 + a,. ,in* + a2, ,l(n*) + O((n*) 3) (2.1) 

Here t/B is the Boltzmann value for t/, which is exact in the limit of van- 
ishing fluid density, n 4 0 ,  n* = n a  a is the reduced density, with a a 
molecular length scale and d the spatial dimensionality of the system. The 
numbers al, ,  are the coefficients in the virial expansion of r/. 

A density expansion of the form of Eq. (2.1) was predicted by 
Bogoliubov's theory, ~41 an extension and generalization of Boltzmann's 
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kinetic theory to higher densities. This theory was generally accepted at the 
time, and it gave the coefficients a~. ,1 in terms of formally exact integrals. It 
came as a big surprise when a detailed analysis of these integrals showed 
that a/.,1 diverges for l>/1 in two-dimensional (2D) systems and for 1>/2 in 
3D systems. 15~ Shortly after this discovery, exact calculations for a model 
fluid, the classical Lorentz gas, confirmed these results, t61 A Lorentz gas 
consists of noninteracting particles that move in an array of randomly posi- 
tioned, static hard-disk ( d = 2 )  or hard-sphere ( d = 3 )  scatterers (see ref. 7 
for a discussion of Lorentz models). The moving particles can be either 
classical or quantum in nature. The only relevant transport coefficient is 
the diffusion coefficient, or, equivalently, the particle mobility or conduc- 
tivity. The important point was that the exact explicit calculations for 
classical Lorentz gases showed that the coefficients a c/~ in the virial expan- 
sion, Eq. (2.1), for the diffusion coefficient are indeed divergent for l>~l*, 
and that the value of l* displays the dimensionality dependence suggested 
by the estimates for real gases. For later reference, we mention that the 
quantum version of the Lorentz gas is essentially the standard Edwards 
model for systems of disordered, noninteracting electrons (see, e.g., ref. 8). 

These divergences in the virial coefficients are a clear indication of the 
presence of long-ranged dynamical correlations in both Lorentz gases and 
real gases. They have the following origin: In making a virial expansion, 
one assumes that the lth term in Eq. (2.1) is determined by the dynamics 
of a cluster o f / +  2 particles moving in the infinite system. Because the 
cluster is considered in isolation, the l + 2  particles can travel over 
arbitrarily large distances between collisions. However, this can occur 
neither in a real gas nor in a Lorentz gas, since the presence of the other 
particles that are not members of the cluster under consideration means 
that a particle cannot travel farther than a distance on the order of a 
mean-free path before it collides with another particle. This is a collective 
many-particle effect that was missed in Bogoliubov's cluster expansion. Its 
existence precludes a virial expansion for transport coefficients. Mathemati- 
cally, this physical effect leads to a nonanalytic density dependence of the 
transport coefficients, i.e., the virial coefficients are not simply numbers, but 
nonanalytic functions of the density. The leading nonanalyticity turns out 
to be logari[hmic, ~9~ in agreement with the logarithmic divergence found in 
the early work. Equation (2.1) then takes the form, in d =  3, 

q/qn= 1 +al.,ln* +a'.,l(n*)+logn* +az.,l(n*)2 +o((n*) 2) (2.2) 

Here o((n*) 2) denotes a term that for n * ~  0 vanishes faster than (n*) 2. 
For real gases, only estimates of the coefficient a~,,1 are known (see, e.g., 
ref. 10). For the classical Lorentz gas, a'. 0 is known exactlyJ 61 
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2.2. L o n g - T i m e  Tails 

Up until the late 1960s it was also thought that the equilibrium time 
correlation functions that determine the transport coefficients decay 
exponentially with time for long times. This belief was based again on 
Bogoliubov's kinetic theory, which predicted such an exponential decay. 
Actually, the separation of time scales that is present only with exponen- 
tially decaying time correlations was an important presumption in that 
theory. This appeared to be very plausible since the Boltzmann equation, 
which becomes exact in the limit of dilute gases, also yields an exponential 
decay of time correlations, which seemed to guarantee an exponential 
decay at least for dilute gases. It was therefore a further completely 
unexpected development when Alder and Wainwright, tl~ in a computer 
study of self-diffusion in systems of hard disks and hard spheres, discovered 
that the equilibrium velocity autocorrelation function (v(0).v(t))cq, 
whose time integral determines the diffusion coefficient D via 

D =-~ dt  (v(0). v(t))cq (2.3) 

decays only algebraically with time, namely 

(v(0).v(t))eq ~ C ( t o / t )  a/2 (for t>>to) (2.4) 

where to is the mean-free time between collisions. Here (--.)cq denotes an 
equilibrium thermal average. This slow decay of correlation functions is 
known as a long-time tail (LTT). The constant c is positive, which implies 
that the LTT contribution to the autocorrelation function increases the dif- 
fusion rate compared to the Boltzmann result. Note that Eqs. (2.3) and 
(2.4) imply that the diffusion coefficient D does not exist for d ~< 2, and that 
for low frequencies, the frequency-dependent diffusion coefficient D(co) 
behaves as 

D ( o g ) / D o =  l--c ' ( iog)"l-2~/2 + . . .  (d>2)  

D(og)/D o = 1 - c" log(ir + ... (d = 2) 

(2.5a) 

(2.5b) 

with Do the static or zero-frequency diffusion coefficient, and c' and c" 
positive constants. 

Equation (2.4) was latter derived theoretically by Ernst et aL ct'-~ and 
Dorfman and Cohen. t~sl The basic physical idea behind the explanation 
of the LTT phenomenon is that it is the hydrodynamic processes that 
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determine the long-time behavior of all correlation functions. Of particular 
importance are recollision processes, where, after a collision, the two 
involved particles diffuse away and then come back and recollide. We can 
see this in Eq. (2.4), the right-hand side of which is proportional to the 
probability that a diffusing particle returns at time t to the point it started 
out from at t = 0. This concept is a very general one, and it turns out that 
all of the transport coefficients in a classical fluid have LTT like those 
shown in Eqs. (2.4) and (2.5). That  is, if r/(co) is a general frequency- 
dependent transport coefficient, then 

r/(~o)/r/0 = 1 -c' , ,( iog)(a-'-)/2+ . . .  ( d > 2 )  (2.6a) 

q(co) /qo= 1 - c','~ log(iog) + ... ( d = 2 )  (2.6b) 

The existence of LTT even for arbitrarily dilute fluids is not in con- 
tradiction with the Boltzmann equation becoming exact in the dilute limit. 
The point is that the Boltzmann equation becomes exact for fixed time in 
the limit of vanishing density, but not for fixed density, no matter how 
small, in the limit of long times. The way the dilute limit is reached is that 
with decreasing density, one has to go to longer and longer times in order 
to see the LTT, and the preasymptotic decay is well described by the 
Boltzmann equation. 

It was pointed out above that the LTT in a fluid are related to the 
probability of a diffusing particle to return at time t to the point where it 
was at time t = 0. Although the recollision events that are responsible for 
this return probability always occur, this does not necessarily imply that all 
correlation functions in a given system (other than a real classical fluid) 
decay as t -a/2. Rather, it just suggests the possibility that they do, and 
whether or not a particular correlation function actually does so depends 
on whether the corresponding observable couples sufficiently strongly to 
the hydrodynamic processes in the system under consideration. It is 
plausible to assume that, for any given observable, coupling to the diffusion 
process is more likely the more hydrodynamic or soft modes there are in 
the system. For  example, in a d-dimensional real fluid there are d +  2 soft 
modes due ' t o  the d + 2  conservation laws for particle number, energy, 
and momentum. In contrast, in a Lorentz gas only particle number (and, 
trivially, energy) is conserved. This smaller number of hydrodynamic 
modes suggests, according to the above argument, that the LTT might be 
weaker in a Lorentz gas than in a real fluid. Indeed, the velocity autocor- 
relation function in a Lorentz gas decays as c 141 

(v (0) .v ( t ) )cq  ~- -C( to / t )  Id*'-1/2 (for t>>to) (2.7) 
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and the frequency-dependent diffusion coefficient is given by 

D(co)/Do= 1 +ai~o+b(i~)aJ2 + ... ( d > 2 )  (2.8a) 

D(o3)/Do= 1 +b'io~ log(ioJ) + .. .  ( d = 2 )  (2.8b) 

The coefficients c, b, and b' in Eqs. (2.7) and (2.8) are positive. This 
sign occurs because in a Lorentz gas, in contrast to a real fluid, any recolli- 
sion process decreases the diffusion rate. This is a consequence of the 
missing dynamics of the scatterers. 

2.3. Long-Range Correlations in Nonequilibrium Steady States 

In contrast to the slow time decay of equilibrium time correlation 
functions for classical fluids discussed in the last subsection, the spatial 
correlations decay exponentially in such systems, except at isolated critical 
points. This asymmetry between space and time correlations is related to 
the detailed balance relation that is valid in equilibrium, and it is not 
generic. In more general states, e.g., in nonequilibrium steady states, where 
detailed balance is absent and where there is spatial anisotropy, long-range 
correlations occur in both space and time (e.g., Dorfman et  a].(2)). 

From a general point of view the existence of long-ranged spatial 
correlations is not surprising. Thermal fluctuations constantly appear in a 
fluid, and then decay. Their behavior at long distances is determined by the 
soft dynamical modes that are singular in the long-wavelength limit. For 
example, in the static or zero-frequency limit, the diffusion equation 
becomes Laplace's equation, whose solution exhibits a power-law decay in 
space. 

The best studied system, both theoretically and experimentally, is a 
simple fluid subject to a stationary temperature gradient (see Dorfman 
et al. ~2j and Weinstock~tS~). Using light scattering, one can measure the 
Fourier transform of the density autocorrelation function, 

S(x, x ' ) =  (fin(x) dn(x'))  (2.9) 

Here 3n(x) is a density fluctuation at point x, and the angular brackets 
denote a nonequilibrium ensemble average. Theoretically, both microscopic 
many-body techniques and more phenomenological approaches yield ~t6~ 

, f [ ~ _ - V T k :  S,, ] 
S ( k ) = S ~  1+~, -k ~- J T D r ( , ' + D T ) J  (2.10) 

Here k is the wavevector, c e is the specific heat at constant pressure, D r  is 
the thermal diffusion coefficient, 1, is the kinematic viscosity, k• is a unit 
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vector perpendicular to k, and So is the equilibrium static structure factor, 
which is k-independent in the long- wavelength limit. Equation (2.10) for 
S(k) is well confirmed experimentally. For  the implications of Eq. (2.10) in 
real space, see ref. 18. 

Long-range correlations in a nonequilibrium Lorentz gas have also 
been studied theoretically. The system considered is a Lorentz gas in 
the presence of a chemical potential gradient Vp. As mentioned earlier, the 
only soft mode in this model is the diffusive number density. Because the 
diffusing particles in a Lorentz model do not interact, correlations can only 
occur between the moving particles and the scatterers. Denoting the density 
fluctuations of the former by fin(x) and the scatterer density for a given 
configuration by N(x), we have as a measure of this correlation the 
particle-scatterer density correlation, 

S(x ,  x ' ) =  (~n(x)  m(x ' ) )  

In Fourier space, a kinetic theory calculation yields ~8~ 

S'k" i k .  Vp 
t ) = 2~Dk 2 

(2.11) 

(2.12) 

with D the diffusion coefficient. In real space, Eq. (2.12) implies that S(r) 
decays like r t - ' (  Again, the correlations are stronger in the real fluid than 
in the Lorentz gas. 

3. DISORDERED ELECTRONS AT ZERO TEMPERATURE 

3.1. Density Expansion of the Electron Mobi l i ty  

In disordered electronic systems, there are two length scales that can 
be used to construct a dimensionless small parameter from the scatterer 
density n, namely the scattering length a and the Fermi wavelength 
2 v = 2 ~ / k  r. We can thus form the dimensionless densities (for d = 3 )  
n2~, n).~a, n2Fa 2, and na 3. The first two do not appear in the standard 
perturbatiofi theory, which expands in powers of n. Is~ The third one is 
usually written as 1/k~l = - e, with l ~  1/na 2 the mean-free path. The fourth 
one is the quantity 17" - -na  3, which also has a classical meaning. Now con- 
sider a dilute electron system in the sense that 2~- >> a. In that case we have 
n * ~  a/l  ~ e, and hence n* can be neglected compared to e. Notice that in 
the quantum Lorentz gas, the dilute limit needs to be considered even for 
noninteracting quantum particles, since the Pauli principle establishes 
correlations, and hence an effective interaction, between the particles. 
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For dimensions d > 2 ,  the system is diffusive as long as e < e * ,  
with e * =  O(1) for d =  3. At e = e* a metal-insulator transition called the 
Anderson transition takes place (see, e.g., ref. 19). For  dilute systems in the 
above sense, n* ~ 1 even at the Anderson transition, and the latter is well 
separated from the percolation transition that would occur at n* ~ 1. 

Considering the generalized virial expansion given by Eq. (2.2), it is 
natural to ask whether or not a similar expression holds for a quantum 
Lorentz gas with the parameter e defined above repLacing the classical 
reduced density n*. This question was first asked, and answered affirma- 
tively, as early as 1966. t2~ More recently, all of the terms in the expansion 
up to and including those of O(e 2) have been computed exactly. ~2~ In 
order to compare the resulting expression with real experimental data, the 
electron mobility p of electrons injected into helium gas at low tem- 
peratures has been considered. Because the helium atoms are very massive 
compared to the electrons, the quantum Lorentz gas constitutes an 
excellent model for this system. Furthermore, there is experimental control 
over the density of the injected electrons, which means that the above- 
mentioned diluteness condition can be fulfilled to an extremely high degree. 
This also means that Coulomb interaction effects can be made negligible. 
In order to model the actual experimental situation, one needs to consider 
a nondegenerate gas of electrons at temperature T with the thermal de 
Broglie wavelength )-r = 2 x / k T  = ( 2 x / m k B  T)~/'-, replacing /l F in e. Defining 
g = 2 / k r l ,  an exact calculation gives t2'~ 

P/Pcl = 1 + P iX + P" X 2 log X + P2X 2 + o (x  2) (3.1a) 

with 

/.l i : - - 7 [ 3 / 2 / 6  

p', = (z~ 2 - 4)/32 (3.1b) 

/t 2 = 0.236... 

and Pc~ the classical or Boltzmann value for mobility. 
In Figs. 1 and 2 this theoretical result is compared with experimental 

data. Of particular interest is the question whether this kind of analysis can 
be used to experimentally confirm the existence of the logarithmic term in 
Eq.(3.1a). In classical systems the corresponding logarithmic term in 
Eq. (2.2) has never been convincingly observed, I ~0j mostly due to the fact 
that the coefficients in the density expansion are not known exactly for any 
realistic classical system. The fact that the quantum Lorentz gas is such a 
good model for electrons in helium gas makes this system a very promising 
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Fig. 1. Mobility It of  electrons in dense gases, normalized to the Boltzmann value itr as a 
function o f x  = 2/krL The symbols represent experimental data, the solid line is the theoretical 
result, Eq. (3.1a). After ref. 22. 

one for attempts to finally observe the logarithm. As a measure of the 
logarithmic term, one defines t2tl 

f(x) - [/~//zc,- I --~/IX']/X 2 (3.2a) 

The theoretical prediction for this quantity is 

f (x )  =P"  log Z +P,_ _+p22 v/-~;t ' (3.2b) 

The last term in Eq. (3.2b) is an estimate of the effect of all higher 
order terms. At T = 4 . 2 K ,  a helium gas density of n=1021cm -3 
corresponds to X = 1, and data were obtained for X as small as 0.08. Fig. 2 
shows the theoretical prediction, Eq. (3.2b), for 0 < X < 0 . 7  together with 
data by Schwarz. We conclude that the experimental data are consistent 
with the theoretical result. However, for a convincing demonstration of the 
existence of' the logarithmic term an improvement in the experimental 
accuracy by about a factor of ten over Schwarz's experiment would be 
necessary. 

3.2. Long-Time Tails, a.k.a. Weak Localization Effects 

The results discussed in the previous subsection seem to suggest that 
there is no conceptual difference between transport in classical and dilute 
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Fig. 2. The reduced mobility./: as defined in Eq. (3.2a), vs. the density parameter Z = 2/krl. 
The theoretical prediction is Ibrfto lie between the two solid lines. The experimental date are 
from Fig. 9 of ref. 23 with error bars estimated as described in re['. 21. The broken lines show 
what the theoretical prediction would be in the absence of the logarithmic term in the density 
expansion. From ref 21. 

quan tum Lorentz  gases: The forms of  the density or  disorder expansions, 
Eqs. (2.2) and (3.1), are identical, even though the dimensionless expansion 
parameters  are different. This conclusion is fallacious, however, as can be 
seen by considering the LTT in the time correlation functions, or  in the 
low-frequency expansions of  the t ransport  coefficients for the two models. 
Here we first quote the quan tum result, and then we discuss the reason it 
is qualitatively different from its classical counterpart .  

Any of  a variety of  theoretical methods  leads to a frequency-dependent 
electrical conductivi ty for a quan tum Lorentz  gas whose real part  is of  the 
form~24. 25~ 

a(co)lao=l+coJi,t ~_~.2+... (for d > 2 )  (3.3a) 

a(co)/ao = 1 + c' log co + . . .  (for d =  2) (3.3b) 

Equations (3.3a), (3.3b) imply that the current -current  correlat ion 
function, which is defined as the Fourier  t ransform of the real part  of  the 
conductivi ty has a LTT, 

a( t )~-c ( to / t )  a'2 (for t>>to) (3.3c) 

The coefficient c in Eq. (3.3c) is positive. For  d =  2, and more  generally for 
d<,%2, the low-frequency expansion of  a(og) breaks down,  and the static 
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Fig. 3. Resistance R, normalized to Ro= RIT= I K), of a thin PdAu filnl plotted versus 
log 7". After reE 27. 

conductivity or the static diffusion coefficient is actually zero. That is, 
lbr d~<2 there is no metallic phase at zero temperature. ~26 ,9~ At finite 
temperature and zero frequency, the temperature dependence of cr is 
obtained by replacing the frequency in Eqs. (3.3a) and (3.3b) by the 
temperature T. For T > 0 and co --* 0 the leading frequency dependences are 
given by Eqs. (2.8), i.e., the classical result is recovered. Figure 3 shows an 
example of the temperature-dependent resistivity of a thin metallic film, 
which is logarithmic for low temperatures in agreement with the above 
remarks. 

Let us now discuss the interesting difference between the frequency 
dependencies in Eqs. (2.8) and (3.3). Equations (2.8) can be derived not 
only from a classical microscopic many-body approach, but also from a 
more general phenomenological approach that appears to be independent 
of whether or not the underlying description is classical or quantum 
mechanical/2s) The crucial assumption is that the only slow mode in the 
problem is due to particle number conservation. Remarkably, it is this 
assumption "that breaks down in the quantum case, and this is what leads 
to the differences between Eqs. (2.8) and (3.3). To understand this impor- 
tant point, let us consider a field-theoretic description of a disordered 
fermion system (see, e.g., ref. 29), which we assume to be noninteracting for 
simplicity. The partition function is 

Z=f~, DE~, if] exp(S[~,  if])  (3.4a) 
( 0 1  = - - ~ ( I / k l ~ T )  
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with the action S given by 

O 
SEe, = - f  dx N 

Here we have used a four-vector notation, x = (x, r), ~ d x ~ d x  ~o/rdr, with 
r denoting imaginary time. m is the fermion mass,/~ is the chemical poten- 
tial, u(x) is a random potential, and for notational simplicity we have 
suppressed the spin labels. Since we are considering fermions, the fields 
and ~b are Grassmann-valued and D[~,  ~b] is a Grassmannian functional 
integration measure, but for the following arguments this will not be 
crucial. By changing from imaginary time representation to a frequency 
representation, 

- -  i o ) n r  O(x) = T 1/2 ~. e 0,,(x) (3.5a) 
H 

with Matsubara frequencies 

co,,=2rcT(n + 1/2), n = 0 ,  _+1 .... (3.5b) 

we can write the action 

I E 1 ] S = ~  d x ~ , , ( x ) ~ m A + / ~ - - u ( x ) - - i m , ,  $,,(x) (3.6) 
n 

The crucial point is that for o9, = 0, or T =  0, the action given by Eq. (3.6) 
is invariant under a unitary transformation of the fields in frequency space, 
d/,, ~ Y', u,,,,~,,,,. In fact, S is invariant under a larger symplectic group that 
also includes a time reversal symmetry, but we ignore this technical point 
here. We further note that the "order parameter" 

Q = lim (~ , , (x )  q/,,(x)) - lim (~ , , (x )  $ , , (x ) )  (3.7) 
r ~ 0 -~- OJl l  ~ 0 - -  

is the single-particle spectral function, or the difference between the 
retarded and advanced Green functions. Because these functions have poles 
on opposite sides of the real axis, Q is nonzero as long as the density of 
states at the Fermi surface is nonzero. 

To use a magnetic analogy, having a nonzero Q in Eq. (3.7) is similar 
to having a nonvanishing magnetization in the limit of a zero external field, 
and the above-mentioned unitary symmetry is analogous to the rotational 
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symmetry in spin space. This analogy implies that in the zero temperature 
fermion system there is a spontaneously broken continuous symmetry. This 
was first noticed in the context of the Anderson transition mentioned in 
Section 3.1.13~ Goldstone's theorem then implies that there are soft 
modes, namely particle-hole excitations, in addition to the ones implied by 
the conservation laws. Detailed calculations confirm that it is these addi- 
tional soft modes that lead to the stronger LTT effects in Eqs. (3.3) as 
compared to the classical LTT in Eqs. (2.8). 

3.3. Long-Ranged Spatial Correlations in Equilibrium 

A characteristic feature of quantum statistical mechanics, as opposed 
to the classical theory, is the coupling of statics and dynamics. This can be 
seen in Eqs. (3.4), where the basic statistical field ~ is a function of both 
space and imaginary time. As a result, one does not expect any qualitative 
differences between static and dynamic correlations even in equilibrium, in 
contrast to the asymmetry between these two types of correlations that is 
observed in classical systems and was discussed in Section 2.3. 

Indeed, a calculation of the wavenumber dependent static spin suscep- 
tibility Z,.(k) in a disordered system of interacting electrons yields the 
following behavior for small wavenumbers: 13z 331 

X~.(k) = co - c a _  2 [kl'/-'- _ c2k 2 + ... (3.8) 

where the c~ are positive, constants. In real space, the nonanalytic term 
proportional to [k[ a-2, which for d < 4  is the leading k-dependence of Z,. 
corresponds to a long-range interaction between the electronic spin density 
fluctuations that falls off like r 2-2'/. This has recently been shown to have 
interesting consequences for the ferromagnetic quantum phase transition 
that occurs in an itinerant electron system at zero temperature as a func- 
tion of the exchange interaction. 133~ 

The origin of this long-range correlation can be traced back to the 
same Goldstone modes that were discussed in the last subsection, and that 
also lead to the LTT. In a disordered system, the Goldstone modes are 
diffusive, arld give a contribution to the spin susceptibility that can be 
schematically represented by 

ikl fo,k o) (3.9) Z,.(k) ~ d p p  a -  ' de)  ( D p 2  + o))3 

with A an ultraviolet cutoff and D the spin diffusion coefficient. Equa- 
tion (3.9) demonstrates the coupling of statics and dynamics that was 
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mentioned above, and doing the integrals yields Eq. (3.8). The fact that this 
coupling is really a quantum effect can be seen by considering the corre- 
sponding expression at finite temperature. In this case one has to perform a 
frequency sum rather than an integral, and the net effect is that the term 
Ik[ •-2 in Eq. (3.8) is replaced by (k 2 + T) q'l 2~,,2. Hence, for T >  0 an analytic 
expansion about k = 0 exists, and there are no long-ranged correlations. 

3.4. Long-Ranged Spatial Correlations in Nonequilibrium 
Steady States 

Very recently, spatial correlations of density fluctuations have been 
studied in noninteracting disordered electronic systems that are not in equi- 
librium. ~34~ For the model defined by Eqs. (3.4) or (3.6) the correlation 
function analogous to Eq. (2.1 1 ) for the classical Lorentz gas is 

&(x, x ' ) =  {(f in(x))  u(x')} j~.~ (3.10) 

where { . . .  } ai.~ denotes the disorder average, and ( - . . )  denotes a non- 
equilibrium thermal average as in Section 2.3. A direct many-body calcula- 
tion shows that the Fourier transform of Eq. (3.10), St(k), behaves just like 
its classical counterpart, Eq. (2.12). 

Because the moving particles are fermions, they effectively interact due 
to statistical correlations. As a measure of these correlations we consider 
the structure factor, 

S2(x, x') = { (fin(x) fin(x')) } ai.~ (3.11) 

Let us consider the nonequilibrium part of S,, For a classical, interacting 
Lorentz gas one finds 

S2(k) ~ (Vp)2/k -" (3.12) 

Naively, one might anticipate a similar result for the disordered electron 
system at T =  0. However, because of the additional soft modes that were 
discussed in the preceding section, the correlations here are much stronger, 
and the decay is much slower in space. A direct many-body calculation 
yields, in the limit of small wavenumbers, 

N~pr [25(Vp) 2 -  12(f~. Vp) 2 ] (3.13) 
S_~(k) 6drc(Dk2)2 

with N/.- the electronic density of states at the Fermi level, and r the elec- 
tronic mean-free time between collisions. In real space, Eq.(3.13) 
corresponds to a linear decay of S2(r) with distance. 
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4. C O N C L U S I O N  

In this paper we have reviewed classical and quantum versions of what 
one might call generalized long-time tail effects, that is, long-range correla- 
tions in both space and time. We have seen that these effects are due to the 
hydrodynamic or soft modes in the system, which couple via mode-mode 
coupling effects to all other modes unless some symmetry prohibits such a 
coupling. Generally, the quantum or zero temperature versions of these 
effects are stronger, that is of longer range, than their classical counter- 
parts, because of additional soft modes that exist at zero temperature. 
These additional soft modes are Goldstone modes that result from a 
broken symmetry in Matsubara frequency space, and are not related to 
conservation laws. Another additional effect in quantum systems is the 
coupling of statics and dynamics, which leads to both static and dynamic 
equilibrium correlations in general to be of long range, whereas in classical 
systems one has to consider nonequilibrium states in order to get long- 
ranged static correlations. 

A phenomenon similar to the enhanced long-time tail effects in the 
quantum case is also known in certain classical systems with soft modes 
that are unrelated to conservation laws. For example, in the smectic-A 
phase of liquid crystals there are soft modes due to the conservation laws, 
and additional soft modes due to spontaneously broken symmetries and 
Goldstone's theorem. The combination of these soft modes produce 
stronger long-time tail effects than are present in a simple classical fluid 
with no Goldstone modes? 35~ 

Finally, we mention that the effects in electronic systems discussed in 
Section 3 do not qualitatively hinge on the system being disordered. As can 
be seen from Eq. (3.6) and the related discussion, the broken symmetry 
argument still holds for clean electron fluids, with the only difference being 
that the Goldstone modes have a ballistic dispersion in that case, rather 
than a diffusive one. Consequently, the effects discussed in this paper 
qualitatively survive; only the various exponents change compared to the 
disordered system. These LTT effects in clean fermion systems can be 
related to known features of Fermi-liquid theory. This demonstrates the 
generality and unifying properties of the general physical approach taken 
in this paper. 
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